
Copyright © 2016. All rights reserved

Abstract
Space mission planning/scheduling is determining
the set of spacecraft activities to meet mission
objectives while respecting mission constraints. One
important type of mission constraint is data
management. As the spacecraft acquires data via its
scientific instruments, it must store the data onboard
until it is able to downlink it to ground
communications stations. Because onboard storage
and communication opportunities are often limited,
this can be a challenging task.
 This paper describes a formulation of the
overlapping Memory Dumping Problem (oMDP),
which is a generalization of the Mars Express
Memory Dumping Problem (MEX-MDP). We first
describe the abstract problem of onboard data
management for spacecraft. Then we focus on a
more specific version that allows data downlink to
be controlled by using either the priority or the
maximum dump duration of each buffer.
 Previous solutions to the MDP, including Max
Flow and Linear Programming (LP) formulations,
assume that data generation and downlink events do
not overlap. We present a solution, called
DALLOC, that uses a fast heuristic-based method to
solve the more general oMDP. We then compare it
to Max Flow as well as other heuristic methods
using actual mission data from the European Space
Agency’s Rosetta mission. The ESA science
operations team has been successfully using
DALLOC to solve the oMDP in both strategic and
tactical science planning.

1 Introduction
Spacecraft enable us to explore Earth, our solar system, and
bodies beyond our galaxy to the furthest reaches of the
universe. However, determining operations of these
spacecraft (e.g. Mission planning and scheduling) is an
extremely challenging part of these space missions. While in

the space community it is termed mission planning, from an
Artificial Intelligence perspective the issue is more
scheduling than planning as the challenge is to find
appropriate times to schedule observations to achieve
mission objectives that conform to the operations constraints
of the spacecraft. Space mission planning represents a fertile
applications area for Artificial Intelligence-based planning
and scheduling techniques with a wide range of deployed
systems (for a survey see [Chien et al. 2012]).
 One particular challenge for space mission planning is
downlink planning. In this problem the data acquired
onboard from engineering telemetry and science observations
is stored onboard. This onboard storage is limited and is
often pre-partitioned in an inflexible allocation. Commonly,
first a schedule is negotiated between the space mission and
a ground communications station provider (or providers).
Once this schedule has been determined, a prior version of a
mission plan is adapted to ensure that all data is preserved -
determining exactly which portions of onboard storage are
downlinked when so as to enable the science and engineering
data to be acquired and downlinked without loss of data.
 Many variants of this downlink problem exist. For
example, there may be some uncertainty in the volume of
acquired data, or deadlines for downlinking certain types of
data, or buffers with dynamic priorities. We describe a
particularly challenging downlink problem, the oMDP, in
which data generation may occur over extremely long periods
of time, overlapping with long downlink periods. We then
describe the heuristic solution used by DALLOC, and
compare it to two alternative heuristics and a Max Flow
solution.

2 The Overlapping Memory Dumping
Problem (oMDP)

Downlink scheduling is a sub-problem of the larger task of
scheduling spacecraft activities. From a science
planning/scheduling perspective, when constructing the
schedule for the first time, the scheduler must decide on
which observations to include, where they should occur, as

Managing Spacecraft Memory Buffers with Overlapping Store and Dump
Operations

Gregg Rabideau1, Steve Chien1, Federico Nespoli2, Marc Costa3

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
{gregg.rabideau, steve.chien}@jpl.nasa.gov

2European Space Agency, Noordwijk, Netherlands / Telespazio VEGA UK Ltd, Luton, UK.
fnespoli@esa.int

3European Space Astronomy Center (ESAC-ESA), Villanueva de la Cañada, Madrid, 28692, Spain
marc.costa@esa.int

well as which downlink commands to issue to best satisfy
science requests (e.g. for Rosetta [Chien et al. 2015]). When
constructing and evaluating these observation schedules, the
impact of the observations on spacecraft resources, such as
memory, must be managed.

In this paper, we assume that a set of observations has been
selected, and we focus on finding the best way to downlink
data, thus freeing up memory used to store those
observations. We focus on the scheduling of downlink
commands only, assuming that the observation schedule
cannot be changed. Fill rates from observations, and dump
rates from downlinks, are all provided as inputs to the
scheduler. As mentioned, this is a sub-problem of the
strategic mission planning/scheduling process [Costa et al.
2016] where observation scheduling and downlink
scheduling are performed either simultaneously or
interleaved [Ayucar et al 2016]. In addition, this type of
downlink re-scheduling is often necessary during short-term,
tactical planning when certain last-minute changes must be
made (e.g. due to the loss of a downlink).

Our problem was first discussed in [Rabideau et al. 2015]
and is similar to the Mars Express Memory Dumping
Problem (MEX-MDP) described in [Oddi and Policella
2004]. While we discuss this problem in the context of the
Rosetta mission [Rosetta 2015], most space missions handle
downlink/data volume scheduling similarly.

The general problem we solve is to specify an “empty”
function that utilizes a fixed set of downlink periods to keep
a set of onboard memory buffers well within their pre-defined
limits. We formalize the data downlink problem as follows:

Given:

a time range T

a set of buffers B = {b1, b2, ... bn}
where each bj has
 an initial volume state: init_volj
 a final volume requirement: end_vol_reqj
 a hard volume capacity: capacityj
 a required margin: marginj

a set of buffer fillers F = {f1, f2, ... fn}
where each fi = <start_fi, end_fi, rate_fi>

a set of downlinks D = {d1, d2, ... dn}
where each di = <start_di, end_di, rate_di>

Solve:

∀di,∀bj: assign a function empty(bj,t)→rate s.t.:

∀t ∈ [start_di, end_di]: Σ empty(bj,t) ≤ rate_di
(cannot empty more than the downlink capacity)

∀t ∈ T: volume(bj, t) ≤ capacityj - marginj
(cannot exceed the buffer capacity minus margin)

t = max(T): volume(bj, t) ≤ end_vol_reqj
(cannot exceed the end volume requirement)

∀bj: minimize max(peak_percent(bj))
(maximize robustness)

In reality, as we will see, flight software on actual missions
is not designed to allow for arbitrary downlink policies, so
that our ability to control the empty(bj,t) function is not as
flexible as desired.
 Note that in our problem formulation, the downlinks and
fill function are specified over all time. Therefore, the data
generation and downlink events can occur concurrently.
Indeed, in Rosetta operations, downlinks cover greater than
half of all time and on average seven data generation events
are occurring at any point in time. Thus Rosetta represents a
case where prior problem formulation assumptions of non-
overlap between data production and downlink [Cesta et al.
2007, Righini and Tresoldi 2010] most definitely do not hold.

3 Controlling Data Downlink with Priority
and/or Duration

As with most spacecraft, Rosetta onboard data storage is
partitioned into a set of buffers, called packet stores, for
different types of science and engineering data that is
accumulated from observations. Each instrument has a
designated buffer with a specified hard upper volume limit
that cannot be changed during routine scheduling.

 The behavior of each downlink can be controlled in two
ways: by setting priority or by limiting duration.

• First, a priority can be assigned to each of the memory
buffers, indicating a relative downlink order.

• Second, downlink of a specific buffer can be halted at
any time, effectively limiting the duration of data
dump from that buffer.

Priority and duration are the only decision variables
available to the scheduler for controlling the “empty”
function described earlier. Therefore, in this formulation, the
control variables are:

priorities P = {p1,1, p1,2, ... pi,j} for each di∈D and bj∈B
durations U = {u1,1, u1,2, ... ui,j} for each di∈D and bj∈B

To fully understand how these variables affect the “empty”

function, we must examine the onboard software that controls
the data downlink. We summarize the behavior of the Rosetta
downlink software in the following set of rules.

• Some of the buffers (used for high-priority
engineering data) have fixed priorities and cannot be
halted (they must dump first, and until they are
empty).

• A buffer remains “active” until a command is issued
to stop it, after which no data will be downlinked
regardless of priority.

• When more than one active buffer has data waiting to
be downlinked, the one with higher priority will be
dumped first.

• If more than one active buffer all have the same
priority, data will be downlinked round-robin.

• When a buffer becomes empty, downlink for that
buffer will stop, allowing downlink to start on the next
highest priority buffer.

• Downlink from a buffer will be preempted when new
data is added to an active, higher-priority buffer.

Using these downlink rules, and the two control variables,
the primary goal of the downlink scheduler is to prevent
overflow on all buffers. The secondary goal of the scheduler
is to make selections that respect a minimum margin and
maximum carryover. And finally, it is preferred to have
margins as large as possible, making the schedules more
robust to uncertainties in data collection (e.g. compression
ratios) and downlink availability.

To achieve these goals, the scheduler must first model the
behavior of the buffers so that volume and overflows can be
accurately predicted. This is accomplished using the
activities and timelines of the ASPEN scheduling system.
With a model of how data is collected and downlinked,
ASPEN generates a profile for each buffer that predicts the
data volume at any point during the planning period. This
profile can be used not only to predict overflows, but also
provides information to the scheduler about when, and by
how much, data will overflow. This information can then be
used to make decisions about which priority values to assign
at the start of each downlink, and when to stop the dump
during each downlink. For example, after a given downlink,
if there is one particular buffer that will overflow sooner, or
exceed its limit by more than any other buffer, then that
buffer should be given higher priority or more time to
downlink.

Because of the serial nature of the resulting dump
schedules, using stop dump commands to allocate fixed
downlink volumes is brittle to changes in those downlinks. If
downlink times change (to start later, end earlier, or with an
interruption in the middle), stop dump commands that fall
during deleted downlink periods will be ignored. Losing
these commands will cause some buffers to dump much
longer than needed, consuming time needed by other buffers.

Originally the Rosetta mission used a fixed set of pre-
assigned buffer priorities and selected only the duration for
each dump. To address the brittleness of this approach, the
Rosetta mission switched to a priority-based method, which
assigns different priorities to buffers and does not explicitly
halt data dumps. This method offers less control over the
exact amount to downlink from each buffer, but is more
robust to changes in the downlink schedule. Potentially, both
priority and duration could be used to control the dump
schedule and increase control and robustness - this topic is
left for future work.

In this paper, we discuss a set of value selection heuristics
for the overlapping Memory Dumping Problem (oMDP), and
evaluate their performance on selecting either dump priorities
or dump durations.

4 Downlink Parameter Value Selection
Heuristics

In Rosetta operations, the DALLOC software tool is used to
assign buffer priorities or durations based on the number of
downlinks that exist before the first overflow of that buffer.
Roughly speaking, this “downlink count” heuristic used by
DALLOC will assign higher priorities or longer durations to
buffers with earlier overflows. This ensures that more
downlink time is given to the buffers with more urgent need.
 For comparison purposes, we have implemented three
alternative heuristics/methods for selecting either downlink
duration or priority within the DALLOC framework. In all,
we have:

1. Downlink count
2. Random
3. Percent full
4. Max flow

In the “random” heuristic, values were independently
selected at random to create a lower bound for comparison.
When assigning priorities, one of the available priority levels
is randomly selected. When assigning durations, a set of
random numbers for the buffers is normalized across the total
available downlink duration.
 The “percent full” heuristic assigns priorities (or
durations) by normalizing the peak volume percentages
across the available priority values (or across the downlink
duration). In other words, the relative priority or duration
assigned is proportional to the relative percent full for the
peak of that buffer.
 Finally, we compare our local heuristics against “max
flow” which uses flow values that result from running the
Edmond-Karp max-flow algorithm on the network
constructed for the overlapping Memory Dumping Problem
(oMDP). The MEX-MDP very closely matches the oMDP,
allowing us to use a similarly constructed network. Here,
“flow” represents data flowing into the buffers, out via
downlinks, and carrying over to the next downlink (or end of
the planning period). When the max-flow algorithm
completes successfully, dump durations for each buffer can
be extracted from the resulting graph. If selecting priorities,
the “flow” value is converted to a priority by looking at it as
a percent of the downlink available.
 One distinction with Rosetta and the oMDP, however, is
that buffer store and dump activities can occur over long
periods of time (e.g. hours) and often overlap. In the max-
flow formulation, these activities must be modeled as
instantaneous events. The resulting flow values, therefore,
are not guaranteed to prevent overflow when the buffer
profile is created.
 In “max flow”, the entire schedule is evaluated to compute
control variables (dump durations or priorities) for all
downlinks at once. This can help ensure that selected values
for one downlink do not adversely impact what can be done
in a later downlink (i.e. prevents “painting into a corner”).
However, the run-time for such a global evaluation can be
significantly longer than local methods. All other heuristics
use more local methods, selecting parameters for a downlink

without much consideration for other downlinks. However,
because we update buffer volumes after scheduling a
downlink, this new information can be used when applying
the heuristic to subsequent downlinks. While this lack of
global information may lead to sub-optimal heuristics, it
makes the computation very fast. Efficiency is important
when downlink scheduling must be performed repeatedly
during the construction of observation schedules, as done in
the strategic planning phase.
 All heuristics are compared in the empirical evaluation
section of this paper.

5 Schedule Robustness and Iterative Leveling
As in [Oddi and Policella 2004], we are interested in
producing schedules that are robust to unpredictable events
that occur after committing to the schedule (e.g. after uplink).
For comparison purposes, we use the same approximation to
schedule robustness, which uses the maximum percent full
that any buffer is predicted to be at any time.
 In [Oddi and Policella 2004], max-flow is used to find a
solution for all downlinks. This does not maximize the flow
through any individual downlink, which can produce
solutions that contain buffers that are near capacity at specific
times. These solutions are considered brittle, and an
“Iterative Leveling” technique is presented to improve
robustness. Here, more robust solutions are generated by
assigning an epsilon smaller capacity to the brittle buffer after
each iteration.
 We present a variant of iterative leveling that reduces all
capacities to the same level instead of one-at-a-time, and
iterates using binary search instead of epsilon reduction.
First, we recognize that limiting one buffer to a lower percent
does not help robustness if other buffers are allowed to
increase above the previously identified maximum. For
example, if one buffer is limited to 90%, all should be limited
to 90%. Therefore, binary search can find a more robust
solution by using an artificial capacity that is reduced when a
solution is found, or increased when the solution results in
overflows.

6 Estimated Computational Complexity
Figure 1 contains high-level pseudo-code for downlink
scheduling using a global max-flow formulation, using local
heuristics, and finally the outer loop that adds iterative
leveling with binary search. We use the following variables
to analyze the computational complexity of these downlink
scheduling methods:

D = downlinks
B = buffers
C = capacities
F = fill rate changes

First, we compute max-flow values using the Edmond-Karp
implementation, which is O(EV2) where E is the number of
edges and V is the number of nodes. In the MDP flow
network, there are only a few nodes and edges for each buffer

dump [Oddi and Policella 2004]. Therefore, E and V are each
approximately equal to D*B, making the overall complexity
of solving the MDP with max-flow O(D3B3).
 For all but “random”, the local heuristics require an initial
sort of the downlinks, and a propagation of volumes after
each downlink assignment. Sorting the downlinks is
O(DlgD). Because the downlinks are scheduled forward in
time, recalculating volumes after the last scheduled downlink
is simply proportional to the number of fill rate changes. The
resulting complexity of scheduling using a local heuristic is
O(DlgD + D*F).
 For any of the heuristics, performing iterative leveling with
binary search will add a constant multiplier. This is because
our implementation works on an integer percentage between
1 and 100, which will loop at most lg100 times (about 7
times).
 For the Rosetta mission, downlink planning is typically
processed over a "Medium Term Plan" or MTP, which is
generally 4 weeks in length. For Rosetta there are 16 buffers,
and for one MTP, there are typically 30+ downlinks and
hundreds of fill rate changes.

7 Empirical Evaluation
We have conducted an empirical evaluation of the scheduling
algorithm using the four previously mentioned heuristics for
assigning dump durations or priorities. Performance of the

scheduleWithMaxFlow(D, B, C, F)
 M = computeMaxFlow(D, B, C, F)
 for each d in D
 for each b in B
 assignValue(d, b, M[d][b])

scheduleWithHeuristic(D, B, C, F)
 sort(D)
 for each d in D
 for each b in B
 c = C[d][b]
 heuristicallyAssignValue(d, b, c)
 for each f in F
 recalculateVolumeAt(f)

iterativeLeveling(D, B, C, F)
 Cdelta = 100
 Cprev = 0
 while(Cdelta > 1)
 Cdelta = abs((C – Cprev) / 2)
 Cprev = C
 if(USE_MAX_FLOW)
 r = scheduleWithMaxFlow(D, B, C, F)
 else

r = scheduleWithHeuristic(D, B, C, F)
 if(r)
 C -= Cdelta
 else
 C += Cdelta

Figure 1: Scheduling with max-flow, with local heu-

ristics, and iterative leveling

heuristics based on run-time and schedule robustness. We use
data from four medium-term planning (MTP) periods during
the comet escort phase of the Rosetta mission. The data
collected during each MTP is roughly the same as the
downlink available. This is because the fill rate data we use
was taken from an archive of the tactical planning process,
where the strategic selection of observations has already
completed. In addition, the data collected from these
observations is typically about 2x to 3x the total capacity of
all buffers.
 First, in order to evaluate the performance over a range of
constrainedness, we varied the downlink rates from 80% to
120% of the true rate used in operations. Then, we look at
how each heuristic compares when selecting either dump
duration (Figure 2) or dump priority (Figure 3).
 When selecting dump duration, the relative performance of
the heuristics does not change as the problem becomes more
or less constrained. As expected, selecting random durations
results in schedules that are the most brittle (resulting
volumes were greater than 200% and therefore do not appear
on the graph in Figure 2). Surprisingly, using the max-flow

values does not produce the most robust solutions. The
“downlink count” heuristic, which selects duration based on
the number of downlinks before the first overflow,
consistency outperforms max-flow.
 Next we look at the performance of heuristically assigning
buffer priorities without changing dump durations (Figure 3).
Recall that this will simply control the order in which buffers
are downlinked. Because max-flow solutions contain volume
assignments, we first convert flow values to priorities based
on the flow volume as a percent of capacity. Using the actual
downlink rate (100%), when fill and downlink volumes are
about the same, max-flow outperforms all other methods by
at least 10%. But when over- (<100%) or under-constrained
(>100%), we see that the “downlink count” heuristic
outperforms max-flow by about 10%.
 Results from max-flow were surprising since we had
expected a global solution to consistently outperform any of
the local heuristics. First, we must consider that max-flow
was not designed to assign priorities, which could explain the
results in Figure 3. For under-constrained problems, one
possibility is that max-flow is relying more heavily on
iterative leveling to keep the peaks low. For over-constrained
problems, max-flow is more likely to fail to find a solution,
which could contribute to the drop in robustness. In all cases,
max-flow models the filling and downlinking events as
instantaneous, while in reality, these activities have durations
and even overlap. This modeling inaccuracy may be
producing suboptimal solutions.
 In addition to comparing the robustness of these various
methods, we are also interested in run-times in order to
determine whether the benefits outweigh the costs. Table 1
reports the run times (real CPU time in seconds) of max-flow
and each of the local heuristics, with and without iterative
leveling. Table 2 reports the robustness (max peak volume
percent) obtained, averaged from both priority and duration
assignment, using actual (100%) downlink rates. As

	 No	Leveling	 Leveling	
Downlink	count	 14.6	 92.6	
Max	flow	 337.5	 2190.0	
Percent	full	 11.0	 77.3	
Random	 11.1	 76.8	

Table 1: Average run-times (seconds)

	 No	Leveling	 Leveling	
Downlink	count	 64.2%	 55.6%	
Max	flow	 85.4%	 57.9%	
Percent	full	 76.4%	 77.1%	
Random	 162.9%	 175.9%	

Table 2: Average robustness for the actual (100%)

downlink rate

expected, compared to using local heuristics, the cost of
running max-flow is high (roughly 20x slower). Moreover,
solutions are not much better, and in some cases worse than
those produced by the best local heuristics. Next, we consider
the cost-benefit tradeoff of using iterative leveling. As shown
in the complexity analysis, the cost is a multiplier of lg100,
or about 6.6x. This is consistent with the observed data in
Table 1. In Table 2, we see that iterative leveling, as expected,
is more important for max-flow where no peak minimization
is attempted in a single iteration.
 In our experience, the best combination is the use of
iterative leveling with a local heuristic. This allows the tool
to be more responsive during tactical planning, but also
enables its use as part of the strategic planning process, where
it may need to be run hundreds of times to generate a single
MTP schedule.

8 Discussion
The downlink scheduling algorithms described in this paper
were originally deployed as part of the Rosetta early science
planning operations tool that also scheduled science activities
[Chien et al. 2015]. Later in operations the data downlink
scheduling software was modularized and extracted to also
be used in mid to late tactical science planning. It is this
separated scheduling software and associated algorithms that
we describe in this paper. In some form or other this
downlink scheduling software has been in use to schedule
over 18 Medium Term Plans (each ~1 month of Rosetta
Orbiter operations).
 Automated downlink planning is in operational use for the
Mars Express mission [Cesta et al. 2007]. However, they
model observations and downlinks as non-overlapping (or
equivalently instantaneous) data producers and consumers.
In many space missions, including Rosetta, this assumption
does not hold. Their robustness metric is similar to our
margin requirement.
 Onboard downlink management [Pralet et al. 2014] is
proposed in order to address challenges of uncertainty in data
generation (due to the uncertainty of effectiveness of content-
dependent compression schemes). This formulation of the
problem adds even several more complexities such as
antenna pointing, multiple channels, data latency, and
encoding table time. Again for a typical earth imager, the
data production is effectively instantaneous, in contrast to the
Rosetta problem.
 Most other deployed automated planners must also solve
some version of the downlink planning/scheduling problem
however in most cases it is not the focus of the overall
scheduling problem (e.g. Hubble Space Telescope [Johnston
and Miller 1994], Earth Observing One [Chien et al. 2005,
2010] or Orbital Express [Knight et al. 2013]).
 The Philae Lander for the Rosetta Mission has a science
scheduling with downlink problem [Simonin et al. 2012].
They use ILOG-scheduler in a system called MOST to solve
for most of the scheduling constraints except data
management. They examine the problem of scheduling
science experiments with fixed science experiment storage
and downlink buffer storage but with a fixed priority

downlink strategy. This problem is analogous to the full
Rosetta scheduling problems [Chien et al. 2015]. However,
one key difference is that MOST does not have the ability to
re-program buffer priorities dynamically as we have on the
Rosetta Orbiter (and described here in this paper).

9 Summary
We have described the downlink scheduling problem, a well
defined subproblem within the overall space mission
planning and scheduling problem. While this problem can be
and often is solved in isolation, it is also addressable
concurrently with the overall scheduling problem.
 We then described the Rosetta downlink scheduling
problem as a specific instantiation of the general downlink
scheduling problem with overlapping data creation and
downlinks. We describe heuristic solutions to this new
problem that are in operational use for ESA’s Rosetta mission
and show that they outperform prior max-flow methods that
do not handle overlapping effects on Rosetta mission data.

Acknowledgments
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

References
[Cesta et al., 2007] A. Cesta, G. Cortellessa, S. Fratini, A.

Oddi, and N. Policella. "An Innovative Product for Space
Mission Planning: An A Posteriori Evaluation." Proc Intl
Conf on Automated Planning and Scheduling, pp. 57-64.
2007.

[Chien et al., 2005] S. Chien, R. Sherwood, D. Tran, B.
Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandl, S.
Frye, B. Trout, S. Shulman, D. Boyer, “Using Autonomy
Flight Software to Improve Science Return on Earth
Observing One, Journal of Aerospace Computing,
Information, & Communication, April 2005, AIAA.

[Chien et al., 2010] S. Chien, D. Tran, G. Rabideau, S.
Schaffer, D. Mandl, S Frye, “Timeline-based Space
Operations Scheduling with External Constraints,“
International Conference on Automated Planning and
Scheduling, Toronto, Canada, May 2010.

[Chien et al., 2012] S. Chien, M. Johnston, N. Policella, J.
Frank, C. Lenzen, M. Giuliano, A. Kavelaars, A
generalized timeline representation, services, and
interface for automating space mission operations, Space
Operations (SpaceOps 2012). Stockholm, Sweden. June
2012.

[Chien et al., 2015] S. Chien, G. Rabideau, D. Tran, J.
Doubleday, D. Chao, F. Nespoli, M. P. Ayucar, M. Costa,
C. Vallat, B. Geiger, N. Altobelli, M. Fernandez, F.
Vallejo, R. Andres, M. Kueppers, Using Constraint-based
Search to Schedule Science Campaigns for Rosetta

Orbiter, Invited Talk, Proc. International Joint Conference
on Artificial Intelligence, Buenos Aires, Argentina, July
2015.

[Costa et al., 2016] M. Costa, M. Perez-Ayucar, M. Almeida,
M. Ashman, R. Hoofs, S. Chien, J. Beteta, M. Kueppers,
“Rosetta: Rapid Science Operations for a Dynamic
Comet, Space Operations Symposium, Daejon, Korea,
2016.

[Johnston and Miller, 1994] M. D. Johnston and G. Miller.
"Spike: Intelligent scheduling of hubble space telescope
observations." Intelligent Scheduling (1994): 391-422.

[Knight et al., 2014] R. Knight, C. Chouinard, G. Jones, D.
Tran, Leveraging Multiple Artificial Intelligence
Techniques to Improve the Responsiveness in Operations
Planning: ASPEN for Orbital Express, AI Magazine, Vol
35, No 4, 2014.

[Oddi and Policella, 2004] A. Oddi and N. Policella, A Max-
Flow Approach for Improving Robustness in a Spacecraft
Downlink Schedule, International Workshop on Planning
and Scheduling for Space (IWPSS-04). Darmstadt,
Germany. June 2004.

[Perez-Ayucar et al., 2016] M. Perez-Ayucar, M. Almeida,
M. Ashman, S. Chien, M. Costa, J. Garcia, R. Hoofs, M.
Kueppers, D. Merritt, J. Marin, F. Nespoli, G. Rabideau,
E. Sanchez, “Science Data Volume management for the
Rosetta Spacecraft, Space Operations Symposium,
Daejon, Korea, 2016.

[Pralet et al., 2014] C. Pralet, G. Verfaillie, A. Maillard, E.
Hébrard, N. Jozefowiez, M.-J. Huguet, T. Desmousceaux,
P. Blanc-Paques, J. Jaubert. Satellite Data Download
Management with Uncertainty about the Generated
Volumes. Proc. of the 24th International Conference on
Automated Planning and Scheduling (ICAPS-14),
Portsmouth, NH, USA, 2014.

[Rabideau et al., 2015] G. Rabideau, F. Nespoli, S. Chien.
Heuristic Scheduling of Space Mission Downlinks:
A Case study from the Rosetta Mission. International
Workshop on Planning and Scheduling for Space
(IWPSS-15). Buenos Aires, Argentina, 2015.

[Righini and Tresoldi, 2010] Righini G, Tresoldi E. A
mathematical programming solution to the Mars Express
memory dumping problem. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on. 2010 May;40(3):268-77.

[Rosetta Mission, 2015] http://rosetta.esa.int/, retrieved 16
November 2015.

[Simonin et al., 2012] C. Simonin, C. Artigues, E. Hebrard,
and P. Lopez, "Scheduling Scientific Experiments on the
Rosetta/Philae Mission," "Scheduling scientific
experiments on the Rosetta/Philae mission." In Principles
and Practice of Constraint Programming, pp. 23-37.
Springer Berlin Heidelberg, 2012.

